PRIMITIVES INTERSECTION WITH CONFORMAL 5D GEOMETRY

Eduardo Roa
eduroam@ldc.usbh.ve

Victor Theoktisto
vtheok@usb.ve

Laboratorio de Computacién Grafica e Interaccion
Universidad Simén Bolivar, Caracas-VENEZUELA.

Abstract. Conformal algebra in conformal geometric space allows for ifiacentiated algebraic
treatment of first class members such as points, vectoras édefined by bivectors) and volumes (defined
by trivectors). We have derived a novel unified approach laiypes of collisions in conformal space,
based in a reformulation of euclidean (3D) collision querimapped to conformal space (5D). The
algebraic formulation of collisions/intersections in dormal space was then prototyped in MATLAB to
verify the accuracy of the algorithms for an optimized impdatation in GPU

Key words: Conformal Geometry, Collision Detection, Geometric Algebra

1 INTRODUCTION

I Ntersection among primitives (such as lines, planes andreghare core concepts for any collision

algorithm, and essential in several Computer Graphics arezdsas dynamics, simulation, and graph-
ics rendering [1]. We propose a new unified treatment desdriterein for all types of collisions: line
segment-line segment, line segment-triangle, line segsmrere, triangle-sphere and sphere-sphere,
using Conformal 5D Geometry. A related work [2] shows the iempéntation in GPU of this algorithms
to optimize computation times.

Conformal Geometry uses the geometric algebra frameworichaddlows for a simple and com-
pact representation of all primitives, adapting easilyh® way of how these objects are represented in
computer graphics. In its relation to collision detectibhas the great advantage of unifying all object
intersections by just one formula.

2 GEOMETRIC ALGEBRA

F the varied approaches for mathematical description in Coengiraphics, the most recent has
been the Geometric Algebra formulation, of which a comptéscription may be found in the
work of Dorst [3] [4], and Vince [5].

This algebra has three main operators: the known indet) product &-y), the outer pivector)
product & AYy), and the geometric producty(). As a vector space, it shares other properties of a vector
algebra, such as Euclidean distance, invariance, etc.

Definition 2.1 For vectorsa andb, the outer produca A b defines an oriented hyperplane, or bivector,
with magnitude the signed area of theunterclockwisg@arallelogram|jaA b|| = ||a]|||b|| sin®.

Definition 2.2 Thegeometric producab is a notation for the sum of its inner and outer products.
ab = a-b + anb (1)

From these definitions are derived the following algebragpprties

ara = 0 a> = a-a = |a|]?

(Aa)Ab = A(aAb), forscalarA (Aa)b = A(ab), for scalarA

brna = —aAb = an(-=b) ba = b-a+ bAra = a-b— aAb
an(b+c) = anb + anc alb+c) = ab+ac

a-b = 3(ab+ba) anb = 1(ab—ba)

3 CONFORMAL GEOMETRY

onformal Geometry [3, 6] describes an elegant algebraicesfarcgeometric visualization iR,
being homogeneous, supporting point and lines at infinitgsg@rving angles and distances, and
defining concisely points, lines, planes and spheres.

Definition 3.1 A conformal spac&P+1.41 of p+ 1 positive dimensions and4g1 negative dimensions
is built from aRP9. A point x= ue; + ve, +wes in R is a null vector X= P(x) in R*! (inner product
XX =0, for X # 0), having the orthonormal basee;, e, e3,€ €}.

etrep =1 ee=1 e-e =1 n
ee=1 ee= -1 X = P(

with n andn representing null vectors atfinity and at theorigin. The primitives shown on Table 1 are
derived from these null vectors.

Table 1: Algebraic primitives built in Conformal Geometry 5D

Primitive Representation Geometric Interpretation

Circle C=PIAPAP; Defined by three noncollinear points in the perimeter of the circle
Line L=P AP,AN Defined by two nonidentical points on the line plus the poinkat
Sphere SPIARPAPsAP; Four noncoplanar points on the surface of the sphere

Plane M=P AP, AP3ANn Three noncollinear points define a triangle plus the pointat
Parallelogram A=qiAQ2 Area formed by two anchored vectors

Parallelepiped \=gq1 AQ2A03 Volume formed by three anchored vectors

Pseudoscalar +e; AexAesAene The cannonical rotor for thR** of the conformal space vector base

Definition 3.2 A k-bladeor k-vectoris the outer product of k vectors:

VIAVOA ... AV 1A=V € R™ k<n+m (2)

Definition 3.3 A pseudoscalas the highest order blade in the spaB&™, represented by (12 = —1),
and it is analogous to, the imaginary90°® counterclockwise canonical rotor @f, the complex plane.

3.1 INTERSECTIONS IN CONFORMAL SPACE

Intersections in the conformal geometry model [6] have theaatage of being expressed by just one
formula for all primitives, as shown in Table 2.

Definition 3.4 Themeetoperator (/) denotes anultivectorexpression of up to 32 terms (&™) rep-
resenting the geometric intersection of two multivectotdak the 5-term multivectdr= e;e,e3ee as
pseudoescalar for that space.

B = (XVY)=(IX)-Y, B?=|B|?
B = Bo+Beer+...+BeeCi€+...+ PeeeecCierezee (3)

The work of Roa [7] shows the calculus made for each interseekpressing value fa@?:

Table 2: Primitive intersections ilR*! conformal space

Line — Plane B=MyVvL = (1M1 Ly = 0, intersection at a tangent point
Plane —Plane | B=Ty VN, = (1 My)-Ny < 0, primitives do not intersect
Line—Sphere | B=SVL=(1S) L;
Plane — Spherel B = S vy =(1S)-My For spheres (and circles), the radjuand the centeg

Sphere —Sphere B = S§VvS = (1$)-S are given by the expressiopd = ﬁ ande = SnS

Primitives Conformal representation { > 0, intersection at least at two points
if B2

4 ALGORITHMS

N computer graphics the intersection of a plane with a sphreadine with a plane, is straightforward,
but not very interesting. More useful are the intersectimfrisiangles with spheres, or line segments
with triangles. The following algorithms solve these isestions using the formulas given in TaBle

4.1 LINE SEGMENT-TRIANGLE INTERSECTION

The first step is to determine the intersection of the ling&@omg the segment with the plane con-
taining the triangle in the conformal model. Using the etumaj7]:

B = (wB3+ wifs—waPr)ere + (wpPz+ wifs—wuPr)ere + (w3 — wpPo + wifs)ee
(w31 — WP — wiPs)e2€ + (—waP3+ waP2+ wiPs)ese + (—waPz+ waP2 + wiPs)eze

+
+ (—waPs — waPs — wpPe)ee, with scalar discriminanB? = (waP4 + waPs + wPe)? (4)

where thel’s y w's are the coefficients of the corresponding multivectarandry. A nonnegativeB?
signals a potential collision. If the intersection occutrthen proceeds to intersect the line segment with
each edge of the triangle. Algorithindescribes the procedure for calculating the intersection.

Algorithm 1: Line Segment-Triangle intersection Algorithm 2: Triangle-Triangle intersection
1| kernel Segment Triangle Intersect(segment L1, plane Pl) 1| kernel Triangle Triangle Intersect(triangle PI, triangle P2
2 Normalize(L1); Normalize(Pl)

3 [a,e3er] = ConformallntersectLinePlane(L1,Pl) 2 Verify if all points are at same side of plane
4 L3 = Line(LO.pointl ,LO.point2) 3 if not VerifySameSidePoints(P1) then
5 L2 = Line(Pl.point3,Pl.pointl) 4 return 0 // No Intersection
6 [outl ,indl] = ConformallntersectSegmentSegment(L2, L3) 5 end if
7 L2 = Line(Pl.pointl ,Pl.point2) 6 Normalize(P1); Normalize(P2)
8 [out2 ,ind2] = ConformallntersectSegmentSegment(L2, L3) 7 rl = Line(P2.pointl ,P2.point2)
9 L2 = Line(Pl.point3 ,Pl.point2) 8 r2 = Line(P2.point2 ,P2.point3)
10 [out3 ,ind3] = ConformallntersectSegmentSegment(L2, L3) 9 r3 = Line(P2.point3 ,P2.pointl)
11 /| out# = 1 (segments intersect); 0 (they do not) 10 / out# = 1, intersection exists, 0 no intersection ,
12 / ind#: scalar coefficient of e vector 11 outl = ConformallntersectSegmentPlane (rl, Pl)
13 if (a == 0) then //'line and plane parallel 12 out2 = ConformallntersectSegmentPlane (r2, P1)
14 if e3er = 0 then line lies on the triangle’s plane 13 out3 = ConformallntersectSegmentPlane (r3, Pl)
15 verify segment intersection with other triangles 14 if (outl == 1) or (out2 == 1) or (out3 == 1) then
16 return (outl==1) or (out2==1) or (out3==1) 15 return [/ intersection exists
17 else return 0 // No intersection found 16 end if
18 end if 17 rl = Line(Pl.pointl ,Pl.point2)
19 else //whether both points are in same side of plane 18 r2 = Line(Pl.point2,Pl.point3)
20 signl = trivector(Pl.point2—Pl.pointl ,Pl.point3—PI. 19 r3 = Line(Pl.point3 ,Pl.pointl)
pointl ,L1.pointl—P1.pointl) 20 outl = ConformallntersectSegmentPlane (rl, P2)
21 sign2 = trivector (Pl.point2—PIl.pointl ,Pl.point3—PI. 21 out2 = ConformallntersectSegmentPlane (r2, P2)
pointl ,L1.point2—PIl.pointl) 22 out3 = ConformallntersectSegmentPlane (r3, P2)
22 if (signl == sign2) then 23 return (outl == 1) or (out2 == 1) or (out3 == 1)
23 return 0 // Segment does not touch plane
24 end if // Segment crosses the plane
25 return result = (indl>0 and ind2>0 and ind3 <0) or
26 (ind1<0 and ind2<0 and ind3>0);
27 end if

4.2 TRIANGLE-TRIANGLE INTERSECTION

For triangle-triangle intersections, we do not use the g@plane intersection from the conformal
model. Instead, we take each edge of first triangle and ixteiswith the edges of the second one using
the algorithml. Then we take each edge of the second triangle and repeatdabesp above with the
first triangle. Algorithm2 describes this procedure.

4.3 LINE SEGMENT-SPHERE INTERSECTION

The first step checks whether just one endpoint on the linmnergis inside the sphere, therefore
an intersection occurs. If both points are outside the sphee proceed to apply the calculus using
the conform model, checking the signBf [7]. For this case that there is a crossing between the line

pl p2 p1 R1 p2

Figure 1: Left: one of the angles between the vectors 80°. Right: both angles are acute

segment and the sphere, but both endpoints of the line se@resautside of it, we consider the angles

among the vectors indicated in Figure 1. If both angles ameathen the line segment has pierced the
sphere. The procedure is indicated in the algorighm

Algorithm 3: Line Segment-Sphere intersection Algorithm 4: Triangle-Sphere intersection
1| kernel Segment_Sphere_Intersect (segment R1, sphere El) 1| kernel Triangle_Sphere_Intersect(triangle Pl, sphere El)
2 2
3 ChangedCoordinatedSphere (E1) 3 ChangedCoordinatedSphere (E1)
4 ChangedCoordinatedLine (R1) 4 ChangedCoordinatedPlane (P1)
5 b = CheckPointInsideSphere (R1) 5 r = CheckPointInsideSphere (P1)
6 if (b==true) 6 if (r==true)
7 return 1 //Intersection exist 7 return | Intersection exist
8 end if 8 end if
9 Normalize (R1) 9 Normalize (P1)
10 a = IntersectionConformModelLineSphere(R1,El) 10 r = CalculateIntersectionConformalModelPlaneSphere(P1,El)
11 / a = 0 segment is tangent, a >= 0 No intersect 11 // r < 0 no intersection, r > 0 posible intersection
12 if (a<=0) 12 if (r <0)
13 if (a==0) return 1 13 return 0
14 if (a>=0) return 0 14 else
15 else 15 Check if one line of the triangle intersect the
16 vecOP1 = —R1.puntol sphere
17 vecOP2 = —R1.punto2 16 rl = Line(Pl.punto2,Pl.puntol)
18 vecP1P2 = RI.punto2 — RI.puntol 17 r2 = Line(Pl.punto3 ,Pl.punto2)
19 vecP2P1 = RI.puntol — RI1.punto2 18 r3 = Line(Pl.puntol ,P1.punto3)
20 cosl = CosineAngle(vecOP1,vecP1P2) 19 resl = Segment_Sphere_Intersect (rl, El);
21 cos2 = CosineAngle(vecOP2,vecP2P1) 20 res2 = Segment_Sphere_Intersect (r2, El);
22 if (cosl < 0) && (cos2 < 0) 21 res3 = Segment_Sphere_Intersect (r3, El);
23 return 0 22 if (resl = 1) or (res2 = 1) or (res3 = 1)
24 else // both angles are acute, intersection exist 23 return 1 // Intersection exist
25 return 1 24 else
26 end if 25 / Calculate point with minimal distance of the
27 end if center sphere
26 [d, q] = PointMinimalDistanceSphere(El,Pl) // d =
distance , q point in the plane
27 if (d <=r)
28 v12 = Pl.point2 — Pl.pointl
29 v10 = q — Pl.puntol
30 v23 = Pl.point3 — Pl.point2
31 v20 = q — Pl.punto2
32 v31 = Pl.pointl — Pl.point3
33 v30 = q — Pl.point3
34 signedl = bivector(vl2,v10)
35 signed2 = bivector(v23,v20)
36 signed3 = bivector(v31,v30)
37 // 1f signed are equal the point q is inside
triangle
38 if (signedl = signed2) and (signed2 = signed3)
39 return 1
40 else
41 return 0
42 end if
43 else
44 return 0
45 end if
46 end if
47 end if

4.4 TRIANGLE-SPHERE INTERSECTION

This algorithm requires three steps. If all three vertexeth® triangle are inside, then there are no
intersections. If just one or two points of the triangle argde the sphere, an intersection exists. If these
conditions are not met, then the three points of the triaagteoutside the sphere.

We proceed to calculate the intersection in the conformaleh@hecking the sign &2 [7], signaling
a potential plane-sphere collision. Then we proceed tofse®iof the triangle’s segments intersects the
sphere. If it's affirmative the intersection occurs. Howelitanay be possible that no segment intersects
the sphere and still the intersection exists (see figure @)solve this case, we calculate the paint
(figure 2) whose distance is minimal respect to the centéhalf pointq lies inside the sphere, then the
triangle intersects it, otherwise there is no collisionefnocedure is indicated in the algoritiin

4.5 SPHERE-SPHERE INTERSECTION
The simplest of all intersections, just verifying the sidgrBd [7] in the last equation of Tabl2.

o1 2 F v23

Figure 2: Triangle-Sphere Intersection

5 CONCLUSIONS

WE found a elegant procedure to deal with collisions among igixies in a unified manner under the
conformal model, based on reformulating the collision&éfuclidean space in the correspond-
ing conformalR*! geometric space. In our algorithms we also used several gfenformulations
in R® to complement our results. All the algorithms were protetymnd implemented in MATLAB
to prove accuracy and correctness. When implemented usenGBJ (Graphics Processor Unit) [2],
it accounts for greatly accelerated computation times,oimes cases allowing for real-time collision
detection.

Future work involves simplifying and speeding up even mbeedalculation of these formulas, and
investigating the geometric meaning of each coefficienhefresulting intersection multivector.

REFERENCES
[1] C. Ericson,Real Time Collision DetectiorSan Francisco, CA: Morgan Kaufmann, 2005.

[2] E. Roa, V. Theoktisto, M. Fairén, and I. Navazo, “GPU Collision @& in Conformal Geometric Space,”
in V Ibero-American Symposium in Computer Graphics SIACG'2pf1153-157, Universidade do Algarve,
Portugal, June 2011.

[3] L. Dorst, D. Fontijne, and S. Manizeometric Algebra for Computer Sciencgan Francisco, CA: Morgan
Kaufmann, 2007.

[4] L. Dorst and S. Mann, “Geometric Algebra: A Computational Framévior Geometrical Applications (Part
1),” IEEE Computer Graphics and Applicatigngl. 22, pp. 24-31, 2002.

[5] J. Vince,Geometric Algebra for Computer Graphidsondon, UK: Springer, 2008.
[6] C. Doran and A. Lasenbyeometric Algebra for Physicist€ambridge, UK: Cambridge, 2009.

[7] E. Roa, “GPU-based Operations in 5D Conformal Geometric Spddaster’s thesis, Universidad Simén
Bolivar, Caracas, Venezuela, May 2011.

