
GPU Collision Detection in Conformal Geometric Space

Eduardo Roa1 Víctor Theoktisto1,2 Marta Fairén2 Isabel Navazo2

1Universidad Simón Bolívar, Caracas, Venezuela
2Universitat Politécnica de Catalunya, Barcelona, Spain †

ABSTRACT

We derive a conformal algebra treatment unifying all types of collisions among points, vectors, areas (defined by bivectors and

trivectors) and 3D solid objects (defined by trivectors and quadvectors), based in a reformulation of collision queries from R3 to

conformal R4,1 space. The algebraic formulation in this 5D space is then implemented in GPU to allow faster parallel computation

queries. Results show expected orders of magnitude improvements computing collisions among known mesh models, allowing

interactive rates without using optimizations and bounding volume hierarchies.

Categories and Subject Descriptors (according to ACM CCS): I.3.1 [Computer Graphics]: Hardware Architecture—Graphics pro-
cessors, parallel processing, I.3.5 [Computer Graphics]: Computational Geometry and Object Modeling—Boundary representations,
Collision detection, I.1.2 [Computer Graphics]: Algorithms—Algebraic algorithms

1. Introduction

CErtain application domains, such as animation and haptic ren-
dering, involve real-time interactions among detailed models,

requiring fast computation of massive numbers of collisions. Di-
verse formulations and optimizations have been developed that in-
dividually target specific object representations for collision queries.

In the next sections we present a unified geometric algebra treatment
with a SIMD implementation that shifts collision detection from eu-
clidean R3 to conformal R4,1 space. Line segments, spheres and
polygons (and therefore, meshes) are treated as similar conformal
entities by a shared core of CUDA kernels running in the GPU.

Results show expected orders of magnitude improvements when
computing collisions and intrusions among known mesh models,
without using any hierarchical collision pre-filtering schemes.

2. Collision Detection Computation

BAsically, a collision is the result of a spatial query asking
whether two geometric objects intersect at some point in time.

A likely scenario is rigid body collision detection, highly used in
haptic manipulation [ORC07, TFN10] and animation.

Most techniques avoid exhaustive detection by enclosing objects
into hierarchies of fast-to-discard bounding volumes [Eri05]: Axis-
Aligned and Oriented Bounding Boxes (AABB, OBB), Rectangular
Swept Spheres (RSS), Convex Hulls, kd-trees, and BSP trees.

2.1. GPU-assisted parallel computation

General-Purpose Computation on Graphics Hardware [OLG∗07]
harnesses programmable graphics processors to solve vastly com-
plex problems, sending data as texture memory to shader pro-
grams for some number crunching instead of image rendering. On
top of that, the Compute Unified Device Architecture (CUDATM)

† Co-financed in part by Project TIN2010-20590-C02-01 of the
Spanish Ministry of Science (MEC)

API/SDK [SK10] provides a SIMD parallel programming frame-
work, with concurrent threads/simultaneous kernel execution at the
GPU streaming processors. A current survey of GPU-assisted ap-
plications, including collision detection, can be found at [LMM10].

2.2. Geometric Algebra

A recent formalism in Computer Graphics is the Geometric Alge-
bra approach described by Dorst et al [DFM07], with the extensions
to conformal geometric spaces added by Vince [Vin08]. The fun-
damental algebraic operators in this approach are the inner product

(x · y), the outer product (x∧ y), and the geometric product (xy).

Definition 2.1 For vectors a and b, the outer product a∧b defines an
oriented hyperplane, or bivector. Its magnitude is the signed area of
the parallelogram ‖a∧b‖= ‖a‖‖b‖ sinθ. The sign will be positive
if a folds onto b counterclockwise, and negative otherwise.

Definition 2.2 For vectors a and b, its geometric product ab is the
sum of the inner dot product and the outer bivector product.

ab = a ·b+a∧b,

anticommutative, ba =−ab

associative, a(bc) = (ab)c = abc

distributive, a(b+ c)d = abd +acd

2.3. Conformal Geometry

Conformal Geometry [DFM07, DL09, BCS10] describes an elegant
algebraic space for geometric visualization inR3, since it is homo-
geneous, supports points and lines at infinity, preserves angle and
distance, and can represent points, circles, lines, spheres and planes.

Definition 2.3 A conformal space Rp+1,q+1 of p + 1 positive di-
mensions and q+1 negative dimensions is built from aRp,q space.
A point x = ue1 + ve2 +we3 in R3 maps to a null vector X in R4,1

(X ·X = 0, X 6= 0), having the orthonormal base {e1,e2,e3,e, ē}.

e1 · e1 = e2 · e2 = e3 · e3 = 1, e · e = 1, ē · ē =−1

n = e+ ē, n̄ = e− ē

X = P(x) = 2x+ x2n− n̄ (2.1)

V Ibero-American Symposium in Computers Graphics – SIACG 2011
F. Silva, D. Gutierrez, J. Rodríguez, M. Figueiredo (Editors) 153

V Ibero-American Symposium in Computers Graphics – SIACG 2011

Table 1: The 32 (1+5+10+10+5+1) blade terms of the canonical base for the conformalR4,1 space

Base Elements Blade components
1 scalar λ

5 vectors e1, e2, e3, e, ē

10 bivectors e1 ∧ e2, e2 ∧ e3, e3 ∧ e1, e1 ∧ ē, e2 ∧ ē, e3 ∧ ē, e1 ∧ e, e2 ∧ e, e3 ∧ e, ē∧ e

10 trivectors e1 ∧ e2 ∧ e3, e1 ∧ e2 ∧ ē, e1 ∧ e2 ∧ e, e3 ∧ e1 ∧ ē, e3 ∧ e1 ∧ e,
e2 ∧ e3 ∧ ē, e2 ∧ e3 ∧ e, e1 ∧ ē∧ e, e2 ∧ ē∧ e, e3 ∧ ē∧ e

5 quadvectors e1 ∧ e2 ∧ e3 ∧ ē, e1 ∧ e2 ∧ e3 ∧ e, e1 ∧ e2 ∧ ē∧ e, e3 ∧ e1 ∧ ē∧ e, e2 ∧ e3 ∧ ē∧ e

1 pseudoscalar (I) e1 ∧ e2 ∧ e3 ∧ ē∧ e

Table 2: Algebraic primitives built from blades in theR4,1 conformal space, which also includes scalars, points and vectors

Primitive Blade type Algebraic representation Geometric interpretation

Circle trivector C = P1 ∧P2 ∧P3 Three noncollinear points delimit the perimeter of the circle
Line trivector L = P1 ∧P2 ∧n Two nonidentical points define a segment plus the point at infinity

Sphere quadvector S = P1 ∧P2 ∧P3 ∧P4 Four noncoplanar points delimit the surface of the sphere
Plane quadvector Π = P1 ∧P2 ∧P3 ∧n Three noncollinear points define a triangle plus the point at infinity

with n and n̄ representing the null vectors at infinity and at the origin.
From these null vectors are derived the primitives shown on Table 2.

Definition 2.4 The outer product of k vectors is called a k-blade:

v1 ∧ v2 ∧ . . .∧ vk−1 ∧ vk = V ∈ Rn,m, k ≤ n+m (2.2)

The highest order k-blade of aRn,m space is called a pseudoscalar,
denoted by I (I2 = −1), for its similarity as a rotor to the complex
number i. Thus, I X is a π

2 counterclockwise rotation of X . Likewise,
X I is a π

2 clockwise rotation of X .

2.4. Intersections in conformal space

A multivector is a linear combination of the ∑n+m
k=1

(
n+m

k

)
= 2n+m

canonical base of blades for the conformal Rn,m space. Table 1
shows the 32 blade terms of the canonical base inR4,1.

The meet operator (∨) denotes the intersection multivector, having
pseudoscalar I = e1e2e3eē for that space. Intersections among mul-
tivector in the conformal model [DL09] are specified by the same
equation for all multivectors, as shown in Table 3.

B = (X ∨Y) = (I X) ·Y, with square norm B2 = ‖B‖2 (2.3)

and B = β0 +βe1 e1 + . . .+βe1e2 e1e2 + . . .+βe1e2e3eēe1e2e3eē.

The work of Roa [Roa11] states the following criteria for B2:

If B2 > 0, X and Y intersect at least at two points.
If B2 = 0, X and Y intersect at one point (a tangent).
If B2 < 0, X and Y do not intersect.

Table 3: Primitive intersections inR4,1 conformal space

Primitive Primitive Conformal representation
Line Plane B = Π1 ∨L1 = (I Π1) ·L1

Line Sphere B = S1 ∨L1 = (I S1) ·L1

Plane Plane B = Π1 ∨Π2 = (I Π1) ·Π2

Plane Sphere B = S1 ∨Π1 = (I S1) ·Π1

Sphere Sphere B = S1 ∨S2 = (I S1) ·S2

3. Kernels for the Intersection Algorithms

FOr the next sections we present the algorithms, results and con-
clusions of the CUDA implementation for collision detection,

using meshes from the Stanford University repository at http://www.

graphics.stanford.edu/data/3Dscanrep/. Neither bounding volume hier-
archies nor optimizations were employed, just raw collisions.

The obtained algorithms of interest are Ray–Plane (Line Segment–
Triangle), Plane–Plane (Triangle–Triangle), and Sphere–Sphere.
The different B multivectors and their B2 norms were algebraically
derived for each CUDA kernel.

3.1. Line Segment (Ray)–Triangle (Plane) intersection

The intersection between a line segment and a triangle is a collision
query between the ray passing along the segment and the plane of
the triangle, and later checking whether boundaries meet. The inter-
section multivector B = (Π1 ∨L1) = (I Π1) ·L1 evaluates to

B = (ω2β3 +ω1β4 −ω4β1)e1e+ (ω2β3 +ω1β4 −ω4β1)e1 ē

+ (ω3β1 −ω2β2 +ω1β5)e2e+ (ω3β1 −ω2β2 −ω1β5)e2 ē

+ (−ω3β3 +ω4β2 +ω1β6)e3e+ (−ω3β3 +ω4β2 +ω1β6)e3 ē

+ (−ω3β4 −ω4β5 −ω2β6)eē (3.1)

B
2

= (ω3β4 +ω4β5 +ω2β6)
2 (3.2)

where the βs and the ωs are the coefficients of the corresponding
multivectors for L1 and Π1. A nonnegative B2 signals a potential
collision. The segment is then tested against the triangle’s edges, to
detect crossings and an effective collision. Algorithm 1 describes
the complete procedure to compute intersections.

Algorithm 1: Line Segment-Triangle intersection

1 ke r ne l S e g m e n t _ T r i a n g l e _ I n t e r s e c t (segment L1 , p l a n e P1)
2 Normal i ze (L1) ; Normal i ze (P1)
3 [a , e 3 e r] = C o n f o r m a l I n t e r s e c t L i n e P l a n e (L1 , P1)
4 L3 = Line (L0 . p o i n t 1 , L0 . p o i n t 2)
5 L2 = Line (P1 . p o i n t 3 , P1 . p o i n t 1)
6 [out1 , i nd1] = C o n f o r m a l I n t e r s e c t S e g m e n t S e g m e n t (L2 , L3)
7 L2 = Line (P1 . p o i n t 1 , P1 . p o i n t 2)
8 [out2 , i nd2] = C o n f o r m a l I n t e r s e c t S e g m e n t S e g m e n t (L2 , L3)
9 L2 = Line (P1 . p o i n t 3 , P1 . p o i n t 2)

10 [out3 , i nd3] = C o n f o r m a l I n t e r s e c t S e g m e n t S e g m e n t (L2 , L3)
11 / / o u t # = 1 (segmen t s i n t e r s e c t) ; 0 (t h e y do n o t)
12 / / i n d # : s c a l a r c o e f f i c i e n t o f e v e c t o r
13 i f (a == 0) then / / l i n e and p l a n e p a r a l l e l
14 i f e 3 e r = 0 then / / l i n e l i e s on t h e t r i a n g l e ’ s p l a n e
15 / / v e r i f y segment i n t e r s e c t i o n w i t h o t h e r t r i a n g l e s
16 re turn (ou t 1 ==1) or (ou t 2 ==1) or (ou t 3 ==1)
17 e l s e re turn 0 / / No i n t e r s e c t i o n found
18 end i f

19 e l s e / / whe the r bo t h p o i n t s a r e i n same s i d e o f p l a n e
20 s i g n 1 = t r i v e c t o r (P1 . p o i n t 2−P1 . p o i n t 1 , P1 . p o i n t 3−P1 .

p o i n t 1 , L1 . p o i n t 1−P1 . p o i n t 1)
21 s i g n 2 = t r i v e c t o r (P1 . p o i n t 2−P1 . p o i n t 1 , P1 . p o i n t 3−P1 .

p o i n t 1 , L1 . p o i n t 2−P1 . p o i n t 1)
22 i f (s i g n 1 == s i g n 2) then

23 re turn 0 / / Segment does n o t t o u c h p l a n e
24 end i f / / Segment c r o s s e s t h e p l a n e
25 re turn r e s u l t = (ind1 >0 and ind2 >0 and ind3 <0) or

26 (ind1 <0 and ind2 <0 and ind3 >0) ;
27 end i f

3.2. Triangle (Plane)–Triangle (Plane) intersection

A triangle–triangle is the most interesting collision to define, since
is most commonly used. B is the following term

B = (ω4λ2 −ω2λ4)e1eē+ (ω2λ3 −ω3λ2)e2eē+ (ω3λ4 −ω4λ3)e3eē

+ (ω2λ1 −ω1λ2)e1e2e+ (ω3λ1 −ω1λ3)e2e3e+ (ω4λ1 −ω1λ4)e3e1e

+ (ω2λ1 −ω1λ2)e1e2 ē+ (ω3λ1 −ω1λ3)e2e3 ē+ (ω4λ1 −ω1λ4)e3e1 ē (3.3)

B
2

= (ω4λ2 −ω2λ4)
2
+ (ω2λ3 −ω3λ2)

2
+ (ω3λ4 −ω4λ3)

2 (3.4)

154 E. Roa, V. Theoktisto, M. Fairén and I. Navazo / GPU Collision Detection in Conformal Geometric Space

V Ibero-American Symposium in Computers Graphics – SIACG 2011

Instead of plane intersections, it is much faster to implement a
Triangle–Triangle intersection (see Table 3) for three Segment–
Triangle intersections, as shown in Algorithm 2. Any one segment
colliding with the opposite triangle triggers detection.

Algorithm 2: Triangle-Triangle intersection

1 ke r ne l S e g m e n t _ P l a n e _ I n t e r s e c t (t r i a n g l e P1 , t r i a n g l e P2)
2 / / V e r i f y i f a l l p o i n t s a r e a t same s i d e o f p l a n e
3 i f not V e r i f y S a m e S i d e P o i n t s (P1) then

4 re turn 0 / / No I n t e r s e c t i o n
5 end i f

6 Normal i ze (P1) ; Normal i ze (P2)
7 r1 = Line (P2 . p o i n t 1 , P2 . p o i n t 2)
8 r2 = Line (P2 . p o i n t 2 , P2 . p o i n t 3)
9 r3 = Line (P2 . p o i n t 3 , P2 . p o i n t 1)

10 / / o u t # = 1 , i n t e r s e c t i o n e x i s t s , 0 no i n t e r s e c t i o n ,
11 ou t 1 = C o n f o r m a l I n t e r s e c t S e g m e n t P l a n e (r1 , P1)
12 ou t 2 = C o n f o r m a l I n t e r s e c t S e g m e n t P l a n e (r2 , P1)
13 ou t 3 = C o n f o r m a l I n t e r s e c t S e g m e n t P l a n e (r3 , P1)
14 i f (ou t 1 == 1) or (ou t 2 == 1) or (ou t 3 == 1) then

15 re turn 1 / / i n t e r s e c t i o n e x i s t s
16 end i f

17 r1 = Line (P1 . p o i n t 1 , P1 . p o i n t 2)
18 r2 = Line (P1 . p o i n t 2 , P1 . p o i n t 3)
19 r3 = Line (P1 . p o i n t 3 , P1 . p o i n t 1)
20 ou t 1 = C o n f o r m a l I n t e r s e c t S e g m e n t P l a n e (r1 , P2)
21 ou t 2 = C o n f o r m a l I n t e r s e c t S e g m e n t P l a n e (r2 , P2)
22 ou t 3 = C o n f o r m a l I n t e r s e c t S e g m e n t P l a n e (r3 , P2)
23 re turn (ou t 1 == 1) or (ou t 2 == 1) or (ou t 3 == 1)

3.3. Sphere–Sphere intersection

B = (µ3λ1 − µ1λ3)e1e2e+ (µ4λ1 − µ1λ4)e2e3e+ (µ5λ1 − µ1λ5)e3e1e

+ (µ3λ2 − µ2λ3)e1e2 ē+ (µ4λ2 − µ2λ4)e2e3 ē+ (µ5λ2 − µ2λ5)e3e1 ē

+ (µ5λ3 − µ3λ5)e1eē+ (µ3λ4 − µ4λ3)e2eē+ (µ4λ5 − µ5λ4)e3eē

+ (µ1λ2 − µ2λ1)e1e2e3 (3.5)

As before, B2 will determine if a collision occurs. Algorithm 3

turned out to be as simple as it is inR3: one of the spheres is placed
at the origin and the others moved accordingly, enabling fast com-
putation of huge numbers of colliding spheres.

Algorithm 3: Sphere-Sphere intersection

1 ke r ne l S p h e r e _ S p h e r e _ I n t e r s e c t (s p h e r e S1 , s p h e r e S2)
2 / / o r i g i n s e t a t t h e c e n t e r o f s p h e r e S1
3 C h a n g e C o o r d i n a t e s S p h e r e (S1)
4 C h a n g e C o o r d i n a t e s S p h e r e (S2)
5 re turn C o n f o r m a l I n t e r s e c t S p h e r e S p h e r e (S1 , S2)
6 / / 1 = s p h e r e s i n t e r s e c t , 0 t h e y do n o t

4. CUDA Implementation and Results

AN initial implementation phase was devised in which the R3

to R4,1 algebraic mappings and algebraic algorithms were
prototyped in MatLabTM and linked to AutoDesk MayaTM. After
checking for algebraic correctness, they were migrated to a CUDA
implementation. All trials were performed at a 3 Ghz Dual Core
Intel 2 CPU with a 64 cores NVIDIA 9800GT GPU.

GPU performance tests were executed on intersections and colli-
sions in conformal space among several standard meshes to gather
statistics. On average, they show a three order of magnitude im-
provement for all implemented algorithms from a pure (single core)
CPU implementation of conformal space.

4.1. Mesh-Mesh Collisions

The basic CUDA procedure allows for querying whether an ob-
ject, in this case a polygonal mesh, collides against any of the three
primitives: line segments, triangles, and spheres. All CUDA kernels
share the conformal collision query procedure, with a different post-
processing phase. A typical computed collision between a large tri-
angle (green) and the Stanford Bunny mesh (red) can be seen in
Figure 1, with the intersected mesh triangles shaded in yellow to
show where the plane (triangle) cuts the mesh.

Here are shown the number of collided triangles at the Bunny and
Armadillo meshes in different resolutions:

Bunny - Armadillo Bunny Armadillo
1K - 5K 187 491
1K - 20K 185 996
1K - 100K 194 2215
1K - 345K 195 3968
1K - 1000K 107 5498
1K - 5000K 191 15063

The table corresponds to collisions of the Bunny – Armadillo
meshes (Figure 2) and measured times (Figure 3). Intersected tri-
angles are bright yellow (Bunny) and pink (Armadillo).

Figure 1: Triangle - Bunny Mesh Intersection

Figure 2: Bunny mesh - Armadillo mesh Intersection

Figure 3: Bunny mesh - Armadillo Intersection times

E. Roa, V. Theoktisto, M. Fairén and I. Navazo / GPU Collision Detection in Conformal Geometric Space 155

V Ibero-American Symposium in Computers Graphics – SIACG 2011

Figure 4: Spheres - Spheres Intersection

Figure 5: Spheres - Spheres Intersection times

4.2. Sphere – Sphere Collisions

In this setup, 500, 1K, 2.5K, 5K and 10K randomly generated
spheres are intersected against each other, as seen in Figure 5 and
Figure 4. The spheres that are colliding are shaded in orange. As can
be appreciated, the GPU implementation offers dramatic speedups,
and its curve grows much slower than the CPU implementation.

Triangles Milliseconds Seconds
CPU 4000K 30034,4 30,034
GPU 4000K 715,872 0,715

For example, taking the last values of the Bunny – Line Segment
intersection, even when intersecting a line segment with nearly 4
million triangles, GPU computations are still under 1 second.

4.3. R3 (CPU) collisions vsR4,1 (CPU) collisions

For a measuring framework of the conformal approach, Möller’s op-
timized CPU approach for Triangle-Triangle intersection [Möl97]
was implemented. TheR4,1 conformal model was also implemented
purely in CPU and a performance evaluation was obtained. We can
appreciate in Figure 6 that Möller’s CPU implementation (in red)
is 4 times faster than the conformal model in CPU, attributed to the
extra dimensionality of the latter. Thus, it is expected that a GPU im-
plementation of the conformal would be orders of magnitude more
efficient in this respect.

5. Conclusions

WE have derived a unified treatment of collisions detection
in conformal space, based in a reformulation of collision

queries from euclidean (R3) to conformal space (R4,1), sharing
a parallel GPU implementation of core CUDA kernels implement-
ing collision detection as algebraic operations that indistinctly de-
termine intersections among lines, circles, polygons and spheres.

Figure 6: Fast CPU vs. Conformal CPU Triangle Intersections

In the results we increase throughput by two or more orders of mag-
nitude in collision benchmarks among known mesh models, com-
puted in blind all vs. all manner without any bounding volume col-
lision pre-filtering. This means that realtime collisions of complex
objects in conformal space can be computed at interactive rates.

Given that any hierarchical approach will remove large swathes of
data from the computations, these values are to be considered as
absolute upper limits on a worst case scenario.

Since our model does not use any acceleration techniques, it clearly
signals that radical performance improvements will be observed
when incorporating higher Bounding Volume Hierarchies for early
pruning and other accelerating techniques to the GPU programming.

References

[BCS10] BAYRO-CORROCHANO E., SCHEUERMANN G. (Eds.):
Geometric Algebra Computing in Engineering and Computer

Science, first ed. Springer, 2010. 1

[DFM07] DORST L., FONTIJNE D., MANN S.: Geometric Alge-

bra for Computer Science. Morgan Kaufmann, San Francisco,
CA, 2007. 1

[DL09] DORAN C., LASENBY A.: Geometric Algebra for Physi-

cists. Cambridge, Cambridge, UK, 2009. 1, 2

[Eri05] ERICSON C.: Real Time Collision Detection. Morgan
Kaufmann, San Francisco, CA, 2005. 1

[LMM10] LAUTERBACH C., MO Q., MANOCHA D.: gProxim-
ity: Hierarchical GPU-based operations for collision and distance
queries. Computer Graphics Forum 29 (2010), 419–428. 1

[Möl97] MÖLLER T.: A Fast Triangle-Triangle Intersection Test.
Journal of graphics, gpu, and game tools 2, 2 (1997), 25–30. 4

[OLG∗07] OWENS J. D., LUEBKE D., GOVINDARAJU N.,
HARRIS M., KRÜGER J., LEFOHN A. E., PURCELL T. J.: A
survey of general-purpose computation on graphics hardware.
Computer Graphics Forum 27 (2007), 375–384. 1

[ORC07] ORTEGA M., REDON S., COQUILLART S.: A six
degree-of-freedom god-object method for haptic display of rigid
bodies with surface properties. IEEE Transactions on Visualiza-

tion and Computer Graphics (May/June 2007), 458–469. 1

[Roa11] ROA E.: Operaciones de Cómputo Gráfico en el Espacio

Geométrico Conforme 5D usando GPU. Master’s thesis, Univer-
sidad Simón Bolívar, Venezuela, February 2011. http://www.

ldc.usb.ve/~vtheok/thesis/gpuconformal.pdf. 2

[SK10] SANDERS J., KANDROT E.: CUDA by Example: An In-

troduction to General-Purpose GPU Programming. Addison-
Wesley Professional, Boston, 2010. 1

[TFN10] THEOKTISTO V., FAIREN M., NAVAZO I.: Hybrid Ru-
gosity Mesostructures (HRMs) for fast and accurate rendering of
fine haptic detail. CLEI Electronic Journal 13 (December 2010),
1–12. paper 6. 1

[Vin08] VINCE J.: Geometric Algebra for Computer Graphics.
Springer, London, UK, 2008. 1

156 E. Roa, V. Theoktisto, M. Fairén and I. Navazo / GPU Collision Detection in Conformal Geometric Space

V Ibero-American Symposium in Computers Graphics – SIACG 2011

